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I Introduction

Recently, Jones rl] has presented a method for overcoming the

non uniqueness problem arising in boundary integral equation formu-

lations of the Dirichlet and Neumann problems for the Helmholtz

equation. The major portion of Jones' analysis concerned the exterior

Neumann problem in two dimensions although he indicated how the

results generalised to three dimensions and suggested that the exterior

Dirichlet problem could be similarly treated. Vrsell ',Z_ simplified

the proof of a key theorem in .1 but confined his remarks to :he

exterior Neumann problem in two dimensions. In -3- the authors

presented a systematic exposition of boundary integral equation

formulations of both Dirichlet and Neumann problems and presented a

number of useful properties of the boundary integral operators arising

in both layer theoretic and Green's function approaches.

in particular it was shown that uniqueness of the boundary integral

equation formulations of exterior problems could be retained even

at eigenvalues of the corresponding adjoint interior problems by

treating a pair of coupled equations. That treatment dealt with three

dimensional problems although the results remain intact when the

fundamental solution of the Helmholtz equation in n dimensions is used.

In the present note we show how Jones' modification can be

incorporated into the boundary integral equation formalism of _3-.

Ursell's simplification is adapted to three dimensions and explicit

* results are obtained for both Dirichlet and Neumann problems. In

particular it is demonstrated that a single boundary integral. equation

is uniquely solvable in each case even at interior eigenvalues of the
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adjoint problems by suitably modifying the Green's function in a way

suggested by Jones' approach. Moreover in the present note it is shown

that by abandoning the restriction to real coefficients in the

modifica:ion which Jones and Ursell found sufficient to eliminate non

uniqueness at interior eigenvalues, the coefficients may be chosen to

be optimal with respect to certain specific criteria. In particular

results are presented which show how to choose the coefficients so as

to minimize the difference between the modified and exact Green's

functions for the Dirichlet and Neumann problems and furthermore an

algorithm is presented which determines the coefficients so as to

minimize the spectral radius of the modified boundary integral

operator. Different coefficient choices result in each case.

An alternate treatment involving the explicit determination of

a set of eigenfunctions of the unmodified operator is given in _'..

II Notation and definitions

We adopt the notation of 31 for present purposes. Thus let

D_ denote a bounded domain in P. with boundary D and exterior D+.

The boundary aD will be assumed Lyapunov and when more stringent

smoothness assumptions are needed they will be explicitly noted.

Let R = R(P,Q) denote the distance between any two points P

and Q in 1R^. A function u (P) which satisfies

(V2 + k2)u (P) 0, P E D U 9D, (1)

u
lim r -iku+) 0 (Z)

pp

will be called (following Wilcox 75) a radiating solution of the

Helmholtz equation where (rp,,p) are the spherical polar coordinates

p' p'
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of a point P relative to a Cartesian coordinate system with origin in

D. It should be stressed that the notation in (1) is meant to imply

that there is an open domain including the boundary ;D in which u is

differentiable. A fundamental solution of the Helmholtz equation is

given by

ikR
eyO(P,Q): - - (3)
2rR

and if g(P,Q) is a radiating solution of the Heimholtz equation in

both P and Q then

'1(P,Q): = yo (P,Q) + g(PQ)

-s also a fundamental solution. If w c L2 (3D) then we may obtain

standard and modified forms of single and double layer distributions

of density w according to whether yo or Yl is employed as the

fundamental solution. Thus we have, for j = 0,1,

(Sjw)(P): - w(q) yj(P,q)dsq, P E I: (5)
"3D

(D w)(P): - w(q).- (P,q)ds . P E:I (6)
(wD nq q

where ---- is the derivative in the direction of the outward nornal tc
q

;D at the point a (n points into D ). Further we write _u_0 and
9q + t P

- to denote the normal derivatives when P - p 3 ;D from D and D

p
respectively.

Denote by K. the boundary integral operator, compact on L(3D) as

well as C (3D), (Mikhlin "6,), defined by

(K.w)(P): w(q) __.3 (P,q) ds ,p E D (7)

*3D p q

with L, adjoint
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*K *)P) w(q) - (P,q) ds . p e 3D (8)
,DD anq q

where a bar is used to denote complex conjugate. In terms of K. theJ

jump conditions for the single and double layer distributions are

(S.w) + w + Kjw, p E ;D (9)
t -

an
p

and

lir D.w + w + K. w, p s ;D. (10)P-p-, J

Note that g(P Q) must be defined in a neighbourhood of ;D in rder

for (9) to have meaning.

If the normal derivative of the double layer exists (e.g. if

w S C1 (;D)) then, e.g. Gunter 7],

an+(D w) (Djw) (11)

p P

The existence of the normal derivative of the double layer when

the density arises as the solution of an integral equation,as in the

present context, is established by Angell and Kleinman '87. Kr~l :9.

discusses the case of even weaker hypothesis on the density.

If u+ is a radiating solution of the Helmholtz equation then

Green's Theorem tog-ether with (9) - (11) yield the representation

S u (P) - Dou+(P) u+ P 3 D (1l)

Since g(P,q) must have singularities in D_ (there are no nontrivial

radiating wave functions in p.3) the representation (12) does not



5.

always hold if y0 is replaced by y1 , However the following is valid:

B~) + [u (P), P E D(
S1 (P) - DIu+(P) (,(13)

,n ~ U +(P), p c ;
The representations (12) and 13) yield the boundary integral equations.

-*

S. \-n -K. u+ = (14)

- ) - (D u.) = p D. (13)
Kj \(an -nn p + D n

Observe that Y is an approximate Green's function as defined by Roach

.10, 11. and the present analysis may be considered an application of

the ideas presented there.

Finally we adapt Ursell's notation to IRJ and define normalized

spherical wave functions

,e~ip) L _k (n-m)'j •~= (P): 2-r (2n+l', -.(n;E) Zn'i/kr )Pnm(cos zp)Cos mcp (16)

and

Sne'i(P): L , (2n+!) (n-, e ' (kr )Pm(cos -) sin ma

where

E {m l m 0

2, m > 0

Pm (cos Ep) is the associated Legendre polynomial and 7' i (kr) are
np

the spherical Bessel and Hankel functions

e -- (I ) I
Z (kr) h (kr) (kr) -- " (hr).'n Ze (r n  n 3n

Similarly we denote differentiation with respect to kr by a prime soP

that

Ce,i (P): - - e,i (
( (P) Cn (P

p
(17)

e,i (p) T' ()

LIm
pa
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and the differentiation only affects the radial functions.

The orthogonality of spherical harmonics leads to the relations

e,i'(P)Se,i(p)dS Ce'i(P)Se i'(P)ds 0 n,m,Z, . (18)

9B r Ls L B 2's p
r r

p p

Ce~i(P)C~s(P)ds = 0,Z # n and/or m s
-3B np

r
p

2 2 k rp Zei(kr p ) e,i' (krp), n L, m s. (19)
p n p n p

and

e e,i'0

seBi(P)S e (P)ds m 0,2 n and/or m # s or m = 0B nm Zs p '

r
p

2 2 k r2 Zei(kr e,i' (krp), n = , m = s. (20)

p n p np

where ;B is the surface of a sphere of radius r =
r p

Because of the expansion of the fundamental soiution which in :his

notation is

n
- (<)e I> Si

Y (P,Q) 1 P) > +S(P'z)S (P> ' (21)
n-0 nno

where P<rQ P> p Q
we if rQ < rp , i if rQ > rp ,

the single and double layers have the representations

CO n
e e I

(S w)(P) C ( ) +S S (?), r < min r
0 '0 rr n %nm nm qp D q

and

-- - • .... ' -" :- 'I II_--, - , ' .. ...... ,.... . . ... - . .. " -;. .. :
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(DoW) : 7 C C (P) + S S (P) r ,min r
0n-O O nm M0 P qc D q

C L e (P) SiSe (P) r >, max r (23)
n-o m-0 nm nM MM n qt5D q

where

ce,i rce,i
C = w(q) C (q) ds

W1 3D q

Ce  , w(q) C (q) ds (2
- '3D q a

• ei q(q) Se, (q) ds
1! ;D mq '

ei' 8 e,i
Sq (25)

3 D 3n

Iii The Exterior Neumann Problem

The exterior Neumann problem consists of finding u a radiating

solution of the Helmholtz equation in the sense of (1) anc (2) for

which = g , p s 3D where g+ is a given function on the boundary.

Boundary integral equation formulations are obtained from Green's

theorem (14) and (15).

(I + ,*) +K * = S. (26)
J 

+

D -*

D. w* (K - )g+ (27)

in which case the solution is represented in D+ via (12) and (13) as
. 1 1 

iu+ ! S D w*, I D.

Alternatively the layer theoretic approach starts with the assumed

form of the solution

U a (S.w) (P), P -D L) D (29)

which with (9) yields the boundary integral equation

- . .. .,.. -
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(I + K.) w M g+, p c 3D . (30)

As in F3J we denote those real values of k for which the homogeneous

equations

(I + K.) w 0 0 (31)

has nontrivial solutions as characteristic values of (-K.) and observe,
j

since Kj is compact on L2 (3D), that if k is a characteristic value of

(-K-) it is also a characteristic value for (-K ), (-K.) and (-R*).

It is of course these characteristic values which impede the solution

of (26) and (30). In Z3] it was shown that the pair of equations
(26) and (27) had a unique solution for all real values of k when

j = 0. The fact that a pair must be considered coupled with the

complicated nature of (27) makes this approach difficult to follow in

actually constructing solutions, for example by numerical methods.

it is this complication that is avoided by properly perturbing the

fundamental solution.

First we note the following important result.

Theorem 3.1: For im k>0

0(I + K.) w = 0 if and only if S. w 0, p t -D.

Proof: If = 0 the theorem holds vacuously. If j = 0 the result is

proven in % . For j 1 ! the same proof applies. S,. O, p £ ,D

implies Sw = 0, P D+ from the uniqueness of solutions of the

exterior Dirichlet problem for im k > 0. Hence + S W = 0 which
9n0

with (9) shows that (I + KI) = 0. Conversely if (I + K) w = 0 then

again Sw = 0, P E D+ UD otherwise it would violate the uniqueness

theorem for the exterior Neumann problem which completes the proof.

0
Also we have for nontrivial w

Theorem 3.2: For p c ;D,

5' ~ S***
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(I + K ) w 0 <-> S 0 0 <-> k is an eigenvalue of the interior

Dirichlet problem.

Actually -k2 is the eigenvalue of the Laplacian but in the present paper,

as in [3], we shall understand by eigenvalues of the interior Dirichlet

(Neumann) problem those values of k for which there are non trivial

solutions of (72 + k2 ) u - 0, P E D and u - 0 ( - 0), p c ZD.

This result is proven in F3]. The fact that characteristic values of

-K are identical with eigenvalues of the interior Dirichlet problem

does not generalize to K1 because g(P,Q) is not defined throughout

D-. Nevertheless, with a suitable choice of g(P,Q) we may establish

Theorem 3.3: If

n
g(PQ) = Z : a__ ce (p)Cee (Q)b se(P)Se (Q)- (32)

g(PQ ma = PC Q b_ un nm (3.

with

either a =0 or 2a 1 <1 (33)
nm nm

and either b = 0 or :2b + 1 < (34)

and k is a characteristic value of -K1 then k is an eigenvalue of the

interior Dirichlet problem.

Proof: Assume that k is a characteristic value of -K,, i.e.

0(I + K1) w
tm 0 (35)

has a nontrivial solution. Then Theorem 3.1 implies that S W 0,

P e D+ OD and since g(P,q) is an analytic function of P for r P 0,

it follows that S a 0 is defined for P D--{O and continuous on 3D,

Thus defining

u: -S, , P D_\{0} (36)

it follows that u- (hence u_) is a solution of the Helmholtz equation
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in D N{O} which vanishes on DD. Hence

r au_ - u_

i- -y n D-ds - 0. (37)
(u p ~ p

Let r be the radius of a sphere B entirely in D(r mi r
P rp qe3D q

Then with Green's theorem the equation (37) may be written

~~au_ 9 u_ -
(u - - -- ) ds - 0 W 0

° S .w - S a)ds- -n n 1P
1Br p r B p

p p

(38)

No volume integral term arises because k is a characteristic value of

-K,, hence real. On B
r
p

S w g(P,q) w(q) dS =

n
Ce e e e ()

{a C_ (P) + b S e  (P)} (39)SE-nM .-,nm rim nm ,nm nm
nMO m,,O

where we use the notation of (24) and (25) with w in place of w.

Substituting (22) and (39) in (38) we find

CO n
k: 2: C, (p) + a C (P)} + Se ;S (P) +* b S (P).

- 3 ; B n-O m-Or
p

I(e - -e' . -' - -el{cs )+(P)} S {s. (P) b, S(P).M s ZS s CZs - Zs zs Ls Szs

2-0 s-O

Sn -
_ 22 (e {E (p) a -+e .1gi (p) + - e (p)

n 0 m-O . fl ,n. rm rim nm

ee' e ei' e' e
( {CsCa(P) + (Ps Ce,(P)P+ () S (P) 'ds 0.

-O s/O

(40)
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Upon applying (18) - (20) this becomes
CO n

2(kr )2n: Z {IC 12(Q j' + a a j h (2)'+
n=0 M0O inmun n n n n

ia 2 h ( l ) h (2) ' )  +

in n n

+ Ises12 (jin' + brm h(1) jn + b j h(2)' + b 2h() h ( 2 ) ) -

,e 2 (ji' + . ()' h ( 2 )  +is lzh(2)h(I)?
nmI nn nmnn n n nm n n

n'2 + bnjh + h (2 )j' + b h ) 0 (41)- nm (nn nmnn 1. in n nm n n

where kr is the argument of all the spherical Bessel functions and

the fact that h (l) = h(2 ) has been used. With the Wronskian relationsn n

j .( ), ,- h(2) ., h( ) _ h() _ hi (42)
fnnn -n n n n =nn z2

and

h(l) h(2)' _ h(), h (2) =-2i (43)n n n n z2

where z is the argument of the functions concerned,

we find that (41) becomes

2'C e z2( an+an +2 a_ ) +is 1K(bnm +24b 2)J=0(44)
nO mO n 4M m nm bnm

which may also be written as
o=

S ,eI,. +1 2) + Se (-2_-n mm I nmi\ 2i!a,~ n-12) nm -(1- 2bri +l' 2) = 0 . (45)
Sn-0 m-tO pmri ,n

It then follows from the assumptions on coefficients (33) and (34)

that

a e  , b S - 0, (46)
a -nm \ -,nm

0
hence from (39), we have Sg w - 0, 0 < r < min r but the analyticity

qE;D q
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of solutions of elliptic equations then implies that S w - 0,g

0P e DL)D\{O}. Since S1W = Ov p r 3D it follows then that

0S 0 - O,p e 3D and, with Theorem 3.2, that k is an eigenvalue of the0

interior Dirichlet problem.

It is noted that the sense of the inequalities in (33) and (34)

could be reversed without changing the conclusion, however the

sense of the inequality must be the same for all nonvanishing anm

and bn. It should also be mentioned that inequalities similar to

(33) and (34) were derived by Ursell ,21 although he observed that

by requiring Re a > 0 and Re b > 0 would guarantee compliance and
byrqiigR nm nim

thus attention could be restricted to real values of the coefficients.

These inequalities have also been employed recently by Martin 127 who

explored the relationship with the null field method.

Theorem 3.3 establishes that all characteristic values of -K,

are eigenvalues of the interior Dirichlet problem. It remains to

show that eigenvalues of the interior Dirichlet problem are not

necessarily characteristic values of -K with g suitably chosen. First

we establish

Theorem 3.4: If g(P,Q) is as in Theorem 3.3 and j2a +l<,2b +1 <

all n,m then -K1 has no characteristic values.

Proof. Assume k is a characteristic value so there exists a non-

0
trivial w which satisfies (35). The assumptions on a and b

together with (45) imply Ce _ e - 0 for all n >, 0 and 0 < m < n.
%1n ",nm

With (22) and (39) and the vanishing of and we have
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n
Swi W Z Z q{ CJ(P) + armCM(P)}+n=O in-O

+ S L (P) + b Se(P)} - 0, 0 < r < min rq. (47)
mnm nM P qcD q

But the analyticity of solutions of elliptic equations then implies

that

S - 0, P e DU;D\{0O. (48)

Hence
- 0 0SIO = (-I + K.)w 0, P e ;D (49)

which, with (35) implies that W = 0, violating the assumption, and

thus establishing the result. Note that Theorem 3.4 remains valid

if the sense of the inequalities satisfied by a and b is everywhere
nM

reversed.

We remark that the three dimensional form of Ursell's modification

using the Green's function for a sphere enclosed by the scatterer

73 corresponds to a particular choice of the coefficients in Theorem

3.4. It is however not necessary to require all an and b to be

non zero as illustrated in the following.

Theorem 3.5. If k is an eigenvalue of the interior Dirichle: problem

of multiplicity Z then there exists a g(P,Q) with only L non zero

coefficients such that k is not a characteristic value of -K1 .

Proof. Assume the contrary so that, with Theorem 3.1, there exists

o Se e
a w such that SIw 0, p n 3D. Observe that S and C cannot vanish

11for all n and m otherwise, as in the proof of Theorem 3.4, Sl1W M 0

everywhere causing w to vanish contrary to assumption. However, as

shown in the proof of theorem 3.3, in order for k to be a characteristic

value of -K1 it follows from (45) that

--
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1 ce 12 (12a +lZ-l) IS 12(12b +112-1) 0 for all n and m. We

choose only one a or b tm to lie in the complex plane inside the

e e.
circle of radius j and center at -j when C or is non zero to

have a contradiction. If k is an eigenvalue of multiplicity £ then

the above argument may be repeated £ times leading to at most z non

zero coefficients. With such a g, k cannot be a characteristic

value of -K1 . Additional coefficients may also be taken to be non

zero without disturbing the result. By repetition of this argument

there follows

Theorem 3.6. If kl, k2, ..., kN are eigenvalues (not necessarily

ordered) of the interior Dirichlet problem of multiplicity Z, £2

N
then there exists a g with 1£.i non zero coefficients such that

i-l

ki, k2, .... , are not characteristic values of -K,, hence also not

characteristic values of - 1 , -K*I and -%*.

IV The Exterior Dirichlet Problem

The exterior Dirichlec problem consists of finding v+, a radiating

solution of the Helmholtz equation in the sense of (1) and (2) for

hich v+a f+, p e D where f+ is given in ;D. Boundary integral

equations are obtained from Green's theorem, (14) and (15) which

become in this case

S w - (I + Ki*) f , p £ D (50)

and

(I - K.)w - -.-. D f (51)
.1 9n j

in which case the solution is represented in D+ via (12) and (13) as

M S - D P D (52)

I .- -y
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Implicit in this formulation is the existence of the normal derivative

of the double layer. This can be assured in (51) if f is differ-

entiable on 3D and this can be relaxed somewhat by requiring the

boundary to be Lipschitz (Lyapunov of order 1) rT3  In the uniqueness

theorem cited below however there is always an implicit assumption

that the double layer distribution has a normal derivative in a

sense sufficient to allow use of Green's theorem. That this

assumption is justified is proved in 8].

Alternatively the layer approach starts with the assumed form of

the solution

V+= - D.w*, P s D+ (53)

which with (10) yields the boundary integral equation

(I - K.*) * = f . p e ;D. (54)

As before we denote real values of k for which

(I - K.) - 0 (55)

has nontrivial solutions as characteristic values of K. which are also

characteristic values of K, K4' and K*

Paralleling the discussion in 7 for K we first note
L 0

Theorem 4.1. (1K*) a s 0 if and only if n D. w* 0, p ZD.
~nj

Proof. For j 0 the proof is given in 3. For j - I the argument
o o

is identical. Assume v - -D w* where (I - K*) w - 0. Then (10)
+ 1J

implies v M 0 on 3D and, because there are no eigenvalues of the

exterior Dirichlet problem, v+ . 0 in DQ;D. Hence w- (D w*) exists
0 ern

and in fact vanishes. Since w is an eigenfunction of a weakly

singular integral equation it is continuous on aD (-6) and this fact

together with the assumption that 3D is Lyapunov of order 1 ensures
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that 2- (D1 w*) exists and (11) holas (7]),which establishes the
an 0 0

desired result. Conversely if L (D1 w*) - 0 on 3D let v+=D 1 j*

which then must vanish because of the absence of eigenvalues of the

exterior Neumann problem. Since v then vanishes on D, use of (10)

completes the proof.

Also, as shown in J3] we have

Theorem 4.2
00

w* 0 (D w*) 0 <= k is an eigenvalue of the
0 9n 0

interior Neumann problem.

As in Section III, the fact that characteristic values of K are
0

identical with eigenvalues of Lue interior Neumann problem does not

generalise to KI since g(P,Q) is not defined throughout D_. Neverthe-

less we can establish the following.

Theorem 4.3. If g is defined by (32) subject to (33) and (34) and

k is a characteristic value of K then k is an eigenvalue of the

interior Neumann problem.

0
Proof: Assume (I-K1) w 0 has a nontrivial solution which means that

o1
0

(I-q) w - 0 also has a nontrivial solution. Theorem 4.1 then implies
0

that -; (D w*) = 0.
9n 1

Define

0 a
v (P):-(-D W*)(P)=-n w*(q) (Pq) - g(Pq)'ds P E D_ \.0} (56)1 '-;D onq0 -

and with (23) and (32)

Sn

i

Z e I C 3nm (P) + a Ce(P)' +

+_P M n=O rmO (Pn ()rmi r (7

nmnDp q

1q •

_. _,, -- .... ... :- _ J ..- , k h - .- - A- 5
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where C and S are defined in (24) and (25) with w* replacing wo.'Mm ~UMO

Since v- O, hence -Dv- - 0 on D )it follows that, with Green's
an

theorem

9v v - -

(v -- v -) ds M 0 v --- v )ds (58)
JaD 9n an P 3B On 9n P

r

Now the analysis proceeds exactly as in the proof of Theorem 3.3 with

e and e replacing e and Se respectively leading to the conclusion

that

a C b S 0 for all n > 0 and 0 < m n. (59)
nm'\.nm nm'tnm

This in turn implies that

O ) c n• el e e
(DW*) (P): I w*(q) q g(P,q)ds = n O a C C (P) + b S- S (P)

9 aD Tq q 'n:C MM nml.nm tim flmti fl=

(60)

vanishes identically which means that

2 0
D w* = D w* for all P. (61)
1 o

But D w* = 0 hence Do w* = 0 and Theorem 4.2 then ensures that
an 1 dn0

k is an eigenvalue of the interior Neumann problem, thus completing

the proof. Note that the theorem remains valid if the inequalities

in (33) and (34) are reversed.

While all characteristic values of K are eigenvalues of the interior

Neumann problem, the converse is not necessarily true as is evident

from the following:

Theorem 4.4

If g is given by (3.2) and 2a =+ 1<, 12b +1 1< for all nm

then K has no characteristic values.

I _ _ _ ___
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Pioof: Assume k is a characteristic value so that there exists a
0 0- -

nontrivial w* such that (I-Kr) w* - 0. The fact that anm and b mare

all non zero, together with (59) implies that C =, S = 0 for all
nm n

n >, 0 and 0 < m < n Hence with (23) and (60) it is evident that

0

D w* - 0, 0 < rp< min r . (62)
SqeD q

But the analyticity of solutions of elliptic equations then ensures
0

that DI w* - 0, P c D_\{N} from which it follows that

(I + K*) W* = 0 (63)

0
and - D w*s 0. (64)

9n 1
0

But (64) together with Theorem 4.1 imply that (1-K*) w* = 0 which,

with (63), guarantees that w - 0 thus violating the original assumption

and establishing the theorem. As in the exterior Neumann problem

useful results obtain even with only a finite number of non zero

coefficients in the representation of g.

Theorem 4.5.

If k is an eigenvalue of the interior Neumann problem of multiplicity

z, then there exists a g(P,Q) with only £ non zero coefficients such

that k is not a characteristic value of K1 .

Proof: Assume that k is a characteristic value of K1. Proceeding as

in the proof of Theorem 4.3 it follows that a C = b S = 0, as in
e- ynmh'nm nmn

(59). But C and S cannot vanish for all n > 0, 0 .< m n or else
(59) ~ n Inm 00 res

as in the proof of Theorem 4.4, w* would vanish identically. By

choosing a or b different from zero for one case when C el or Sen
nm nm nm ,nm

is unequal to zero contradicts (59) showing that k is not a

characteristic value of K. If k is an eigenvalue of multiplicity L
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then the argument may be repeated 2 times with linearly independent

w1 , w2 , ..., w leading to at most Z non zero coefficients. Repetition

of this argument for different eigenvalues establishes

Theorem 4.6.

If kI, ... , kN are eigenvalues (not necessarily ordered) of the

interior Neumann problem of multiplicity Zi I) ..."''i respectively
N

then there exists a g with Z Z. non zero coefficients such that
i=l

k, .... , k. are not characteristic values of K1 , hence also not

characteristic values of K1 , Y-, and K*.

V Ontimal -Modifications

Thus far we have shown that by modifying the Green's function by

adding a radiating term of the form given by (32) with coefficients

subject only to the inequalities (33) and (34), the characteristic

values of -KI may be removed. Now we consider the question of

choosing the coefficients more specifically so as :c satisfy various

desirable criteria. One obvious criterionis to choose the modified

Green's function to be the exact Green's function for the problem if there

exists a coefficient choice which will accomplish this, that is, if the

functions {Cnm (P)Ce (Q) , (Q) are complete in D _D+.

The task of finding such coefficients, which is equivalent to

determining the Green's function for the problem is zlearly fcidable.

However by modifying the requirement somewhat we arrive at a coeffiient

choice which is optimal in one sense of approximating the Green's

function.

Consider the Dirichlet problem first and denote the modified

Green's function in this zase by -?P,q). Note chat if Dwere the

LI
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exact Green's function it would vanish for all q e SD and P c D

In particular it would vanish on any sphere enclosing BD. Thus

Theorem 5.1: The choice of coefficients

i e i e
(C , C n) aD(S ,S ) ?

an M D and b =-(65)

n IL2 (3)=.1 L2 (SD)

minimizes the cuantitt'

ilD 1 2  aD ds p for all A >,max rq
r A L2(D P q3DD

where

(U,v) aD : D u(q)v(q)dsq

and

1L L2 (;D)

This choice of coefficients minimizes the difference between the

modified Green's function and the exact Green's function on L, (3D)x

L2 (aBA) for any A >, max r
2 A qc;D q

Proof: Using the definitions (21) and (32) it follows that for

A >, max r
qc 3Dq

Sn
J -Y ds 1C (P)IC__ (q)'a C (q)_ +

r=A 1L,(3D) P 'r p-' D'n-0 m-0

e S
+ S (P):SS (q)ib~ (q)j: j Ids ds (66)

q p
e Se

With the orthogonality of C (P) and S (P) on rp A this becomes
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D 2 ds2 ()2,Y 1 d " Z z 2kA2  h(1(ka) 121
Jr ' 1 'IL(aD)d~ -: kA nl

,:;C1 (q)-a Ce (q~+S(q)+b se (q)!2 ids

2i n (JN mtmq
r-A O-O e 1- 1 ,Ce

2k £ h () i C+a( C +a C C
n0 m-0 n iL 2 (ZD) am mm nm ;D = D

'C '1 ii e nm rn

+a C ( D) IS1  L2(3D) Db (Se S +b (S__
im n L2 (;D)m O D m rum L(mD )

l i s ( 6 7 )

which may also be written

Snj( i (C ,Ce ), D,,m m,'D'"ds 2kA2  Z~h (kA) ' C _ mm CD
"r -A lL2 n=O mO' nm L2(;D) e

p Cm L(;D)

2
,!C e  e2 aD S i  3e D

mL ( D ) janm e 
"  m' L e +2 1 L2( )- 2.i', 1L2 (;D) 'n L (D)

i e(S , s)"iIs d ! e ' D (8
S Ib + (68)

im, L.(;D), nm e L
L,(aD)

and "his is clearly minimized when a and b are chosen to satisfy

(65), thus establishing the theorem.

A natural question is whether the choice of coefficients in

Theorem 5.1 satisfies conditions (33) and (34) ensuring that K. has no

characteristic values. This is in fact the case which we state as

Theorem 5.2.

If k is real, 3D is not a sphere, and a and are chosen as
ti i

I.



in Theorem 5.1 then I"a n+ 1 <ln b 1

Proof: With a nMdefined by (65) we have

2(C ,e Ce Ce 2( ,Ce

2a +11fl 3  D + n 3 D- 3D (69)

Hce 2l ) i nm; L (3D)

But if k is real,

C e (q) - 2C' (q) =~Ce (q) (70)
mm m

hence

!- e 'Ce

2a +I! ; D (71)rim (.e 2

or, denoting by u and v the real and imaginary part of C e (q)
nm

2a l (u'u) aD (v'v) 3D 2i(u, v) 3D
nm I (u'u) +(v v)

3D ; D

V/(u, u) + (V, V) )2+4 .(u,v)'--(u,u)(v,v): (2
(u'u) + (v'v)

and this is clearly less than one if

(u,v)2 < (u,u)(v,v) (73)

i..e. if strict inequality holds in the Schwartz inequality. However

this will be the case provided u and v are linearly independent or

explicitly if

4(kr q)P= (cos S)cos m; (74)

and

n i (kr )Pm (cos S)Cos M (715)
n q n q q

are linearly independent on -,D. But j nand n n are linearly indendt

solutions of the spherical Bessel equation, provided r qvaries on, 'D
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which it will as long as DD is not a sphere. This establishes the

desired inequality for anm and precisely the same procedure establishes

the same result for b =. When BD is a sphere the inequalities (33)

and (34) are not satisfied.However in that case explicit results are

available to show that again K, has no characteristic values. This is

demonstrated in Section VI.

A similar result is available if we require the modified Green's

function, now denoted by y (P,q) to approximate the Green's function

for the Neu-ann problem. Specifically we have

Theorem 5.3

The choice of coefficients

(3 qi c, e ( . eS
Srm' n nm ) m

__D___n__________nq 3D
a D q and b 9n, " e (76)MM , Ce  a m fe ,

9nq 'L 2(;D) n( nm L(D)

minimizes the quantity

i ! 2 ds for every A ,max rq.
'r A nq L2(MD) qaD q

The proof of this theorem is precisely the same as the proof of

ee e

Theorem 5.1 with Ce (q) and Se (q) replaced by C (q) and
nm 3nq neh qusinaanaie

&n- SL (q) and similarly for Ci  and Si . The question again arisesdn rim rim

as to whether the coefficients specified in (76) satisfy conditions

(33) and (34) guaranteeing that -KI has no characteristic values. A

procedure exactly analogous to the proof of theorem 5.2, using the

definitions of anm and bum given in theorem 5.3 shows that the inequality

2a + I <1 is satisfied provided that
nM
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m m- (kr )?(cos e-)cos MO and
anq 4oqn q q nn qP q)Cos

are linearly independent on 3D. While this appears reasonable when

;D is not a sphere, especially in view of the comparable result in

Theorem 5.2 involving the undifferentiated functions, a rigorous

proof has thus far eluded the authors. Once established, a similar

procedure would show that the inequality 2bn= + 1 < is also satisfied.

Yet another criterion for choosing the coefficients in the modific-

ation, and for some purposes perhaps the most meaningful criterion is

to choose the coefficients so as to minimize a bound on the spectral

radius of the modified boundary integral operator, K1 . This con-

sists of minimizing 1 KI] and is ecuallv applicable in both

Dirichlet and Neumann problems. An algorithm which accomplishes

this may also be derived. For this analysis, however, it is

convenient to change notation slightly since the representation

of the modification as as double sum (32) is somewhat awkward

for this purpose. Note that each pair of integers (n,m),O<m<n

uniquely determines an integer Z by

2. -n-2+n + m, 0 < m < n (77)

and moreover each Z >, 0 uniquely determines a pair (n,m) by the same

relation, since Z lies between the sum of the first n and the first

n * I integers for-some n. With this relationship between the

integers k and the ordered pairs (n,m) any series of the form
O n

E A may be rewritten as Z A . Moreover by defining
n-0 m-0 nm e e0

v :e C(P) C (P) • v2 (P) Se(P) = S (P) (78)
2L. Z. rm

a-I~ -
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a2Z Za -anm ; L2-l b£ M bM (79)

We may rewrite the modification (32) as

- n
g(P,q)- Z Z {a ne (P)Cn (q)+b Se (P)Se (q)} a. v (P)v (q) (80)

n-0 m-0 -0

It is also useful for what follows to have the following
v N

Lena 1: The sets {v. and {- -  are linearly independent onL-0

&D for any N including(+ -1

,NNProof. Consider first the set v~~ where v, is defined in

(78). Assume linear dependence i.e. there exist {- not all zero
i-O

such that

N
P(P) C v (P) - 0, P c ;D.

2.=0

But c(P), P E D+ is a radiating solution of the Relmholtz equation

with zero boundary values on 3D. Therefore the uniqueness of solutions

of the exterior Dirichlet problem implies that T(P) - 0, P C D*. In
N

particular z(P) - Z C v.(P) - 0 on any sphere containing DD. But

.v are known to be linearly independent on spheres hence C 0 ' i

violating our assumption and thus establishing the linear independence

of v on ;D. Similarly the uniqueness of solutions of the exterior

Neumann problem implies that if

N
(P) Z C v (P), P E D andZ-0 +

N Dv
- I C. 0Q, P BD, n Z- , n

then 1u 0, P c D, and again the linear independence on spheres implies
;v

the linear independence of - on SD.
t
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Since {v N£ are linearly independent on aD, though not

orthogonal, there does exist a dual basis of the span of {v," denoted

by Iv Z0 with the property that

(v, V-1) D- 6 m. (81)

In fact the functions VmLmay be represented in terms of {v. by
m

N
v-1(P) - Z C v. (P) (82)m j.0 mj

where the coefficients C . are solutions of the ,equations

N N
C (Vv Z C (vj,v (83)

j.0 mj  ^ j mj OD 'aD Zm.

For each m the set of N+l equations is uniquely solvable because the

linear independence of {v Z implies that the coefficient matrix with

elements (v,,v )aD is non singular.

We now are able to characterize the coefficients of the modified

Green's function which minimize the spectral radius of K,.

Theorem 5.4

The choice of coefficients

j 7 yo(P,q) v,(P)v',(q)ds ds-fD f. a pn Z p q" Z av (84)

, :2
p

in the modification (80) minimizes K !L( D hence minimizes an

upper bound on the spectral radius of KI.

Proof: The operator norm will be minimized if the coefficients in the

modification minimize ;Klw i ( for each w E L2 (9D). But in the
p n( oD )

present not ation
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I IKWI 2 (KlwK.w) Lj-(Pq) --(Pq)w(q)w(q)ds ds ds )
L(D DaDJBDf3D p p q q~ p

r;YN ?v 'aYN
1 (P,q) Z--(P)v (q)7 7- -(Pq)+(

DD D p £0 p p 1-0 p

•ds ds ds (85)
q ql p

and we have a standard problem of minimizing a quadratic form. The

necessary conditions for a minimum are the vanishing of the gradient

(with respect to the coefficients) and, since the a may be complex, the

derivatives with respect to the real and imaginary parts of
will vanish separately. Thus

(P v (q r-n V, (P (ql)-
S(p,q)+ Z a(P)v

D" aD 3D 3np -ip t /

y N av
!Vm 'P)v (q) }q) (a w(q)w(qj)ds ds ds = 0

- m Ln p t-a p a ql p

m = 0, 1, 2, ... (86)

and therefore

M()(; (q) r- (P,q)+ '_ a v-

.an m an
D an --(p pq)- a (P)v q)lw(q)w(q)ds ds dspa.ja pp ZO 9 q q, p

av Ny
,w) m 0 Za

;D ,D n p p Z=0 p P

m > 0 (87)

Since this is to be true for all w c L2 (;D) we must have

N av
-m(P) - (Pq)+ Z "--(P)v(q)ids 0 , m>.0 (88)

an i-a 9 n p (88-I D p p Z-0 pP

Forming the inner product with v (q) and using (81) estblishes that a,. m

is given by (84).

- - ---' -. , . ,- , : --
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It remains to show that this choice of coefficients provides a

minimum. That is, if we denote by K the modified operator with

coefficients as specified by (84) and by K1 the modified operator with

any other choice, we must verify that

Kiwi! . IjKlwi for all w e L (;D).

Let the coefficients in the modification be denoted by

a. +0 : (89)

where a 0 are defined by (84). Then

IIKI!2 =(P~)+ Z(2 (P)v.(q),w(q)ds ;2ds
L2 (OD) aD d3D p Z-0 p

0 r r r N
ilK ~3~3 W11 p p .C (Pv(), P qlwqw(ql) x
1"2 (3D +JD9DD Z' LMdn . ~n m

xds ds ds
q q1  p

N N ;- 3v v-
0 Kw1t2 E. E' n (vW vW (90)

k 90 M0 ;D OD ;D

where the linear terms in e, vanish because of the choice of a-. Upon

waking the substitution

Z -:(v ,,w)D

the validity of our result is seen to depend on the positivity of the

quadratic form N N Dv, av

Z£O M-0 N

But, constructing an orthonormal set .u J from {~~,e.g.

using a Gram-Schmidt procedure and the linear independence of
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(Lepa 1), there exists a set of coefficients fC,,. such that

DV£ N
-- 0 Cti u.

for each Z. Then

N N
(-- m) . 2 C_. C (ui u)
n '3n ) i-O j=O k mj j ;D

N
SC . = CC* (91)

iiO ' mi

where C is the matrix with elements C. and C* is the Hermitian conjugate.

However CC* is positive semidefinite 14, P697 which completes the

proof.

We remark that if 0 (P,q) eL,(3D), which is true in IR but
9n p lqcaD

p

not in IR, one could also choose the coefficients to minimize

3-' (Pq) 2,° dsp ds q. However this process would lead to
-;D ;D p

exactly the same coefficients specified in Theorem 5.4.

It should also be remarked that while Theorem 5.4 does provide an

optimal choice for the coefficients a., it requires the explicit

construction of v . While this is possible with (82) it involves

solving (83) for the (N 1)2 coefficients C m and this certainly

represents a numerical complication for large N. If che ;v.: were

orthogonal on 3D i.e. when D is a sphere, then

V,

V+- = (92)

z L2 (aD)

an6' therefore it is proposed that even for non-spherical boundaries, a

reasonable choice is provided by



30.

(P,q) (P) 7 (q) ds ds-(P Dq)n P)V p q
2.Df B an anp p q (93)

1 1 -- -D v 1 L 2 ( B D ) ! [ v : L 2 (z D

pn 2 L2(D

Although the consequences of this choice have not been analysed, it is

expected to be useful for numerical purposes at least for boundaries

which are not severe perturbations of a sphere. An even simpler

approximate choice is given in section VII, motivated by further

results for a spherical boundary.

VI An Example

The explicit coefficient choices found in the last sect-on simplify

considerably when the boundary is a sphere and these results are

presented here. They provide the basis of a coefficient choice which,

while not optimal, is convenient and hopefully useful for numerical

purposes.

Approximate Dirichlet Green's Function

It is perhaps not surprising, since the modification of the Green's

function is in terms of spherical wave functions, that in the case when

k is real and ;D is a sphere the coefficients in Theorem 5.1 render

DD
• -. 5"1 the exact Green's function, or more precisely (because of our choice

of free space Green's function (3)) Y differs from the exact Green's

function for the Dirichlet problem by a factor of If aD is a sphere

of radius a then with (16) it follows that for k real,

qu (q)C (qkds h (ka)a - - f C=()d (94)

e rq(q) ids Ih (1)(ka) '2  h ) (ka)UM q n n

and similarly

. . t.-
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(ka)
bnam n

hC ) (ka)
n

Then
Te(ka)h

(1 ) (kr<) - ()

Dn ik n I) S(kr<)-jn

y (pq)"- '- (2n + 1) 1- h =kI n n Pq
I O h(  (ka)

(95)

where

cos C, cos e cos + sin e sin i cos(€p-: ) (96)
pq p q p q p

and the relation

.n (n-m)o )m (cos )Pm(cos &q)COs m( - ) (97)
Pn(Cos :pq 0 -mZ n pq pq

has been used. Furthermore

D (98)
y1 (pq) - 0, rq a

and, using the Wronskian (42),
cc h (kh(1 k) ()

- (P,q) (2n+) , n P (cos ) r > a. (99)
q 2-a n-O h( ' (ka) n pq '

D n
D

then - exists as a distribution in L2 (;D) with the

representation

ik2 (2n) .(ka): -- ('q= 1 (2n n J-~ a (ka) n(ka)h (ka) -Jn n~

n q 2 rin0 n a n n

n(Cos 3 pq)

, (2n+l) P (cos (100)

4i~2 n pqi 4ra z  n -0

$ With (98) we see that

S w 0 w L2(OD) 
(101)

1.1
A
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therefore using the Green theorem approach, the solution of the

Dirichlet problem is simply, with (52) and (101)

aoh
(I) (kr p) ir l f 27

v+M- I- D f - Z (2n*l). RI de I do sinE f (q)P (cos C
2 1 4r n-0 h l(ka) j0qO q q+ n p

n (102)

On the other hand using the layer approach we have

aD1 r~r r27iq qn p

K ~w* - (2n+l)l de d(; sin - P (Cos C)*(q)
n=0 J 0

- w*(q) e w L 2(OD) (103)

because the spherical harmonics are complete on L2(aD). Therefore

(54) becomes

2w;* = f+ (104)

which with (53) again yields the solution (102).

Approximate Neumann Green's Function

In a manner similar to the above, when ;D is a sphere of radius a

the coefficients specified in Theorem 5.3 reduce, with (16) and

orthogonality to

n' (ka)
a --b -- (1)(105)

h (ka)n

hence the modified Green's function becomes

jkI'(ka) (1) -(1))(2n+l) 7 (kr<) h (kr<)_h (kr>)' (cos z1 (p,q) 2 - n ) 7 ) ka) n - n r' pq

n

h (kr)
1 Z (2n+l) n " P (cos ), r a. (106)

27rka 2 n-O h (ka) n pq q

Moreover
N

- (P,q) 0 0, r , a (107)
3nq P

• . !
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while for r a, D-(P,q) exists as a distribution on L ( D)
p Dnq

with the representation,

D N
ik 2  E-~ k) (a

(Pq- - Z (2n+l) (ka)h (a)+ -J(ka) h (1 )(ka) - 3'(ka)h h ka)anq n-

P (cos Z )
n pq

I (2n~l) P (cos '& ). (108)

4ra n-O n pq

With (107) we see that

Dw* 0, rp > a V w*EL 2 (D). (109)

Therefore using the Green's theorem approach the solution of the

Neumann problem is with (28) and (109)
cck h(1) kr) r 2T

u Slg - (2n+l) n d r: d; sin e (q)P (cosjfln-O h ( ! )~ 77a) .; qjo q qg n -pq
nin0 h n (ka) ; 0n

(110)

On the other hand using the layer approach we have, with (108) and

-the completeness of the spherical harmonics on L2 ( D)

K w - a (2n+l)f" de dc sin e w(q)Pn(cos p) ((Cs)
I rlnWo do q jo q q n pq

a w(P) V w E L2 (aD).

Therefore (30) becomes

2w g(112)

which with (29) again yields the solution (110).

Minimum Spectral Radius

It is of some interest to compare the above results with the

coefficients obtained by minimizing the spectral radius of the

modified operator when -#D is a sphere. The coefficients specified

I
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in Theorem 5.4 simplify as noted in (92) and (93). Thus with (78),

(79) and (21) we have

a -D ( Y (P q)---C ()C (q)ds ds
,03 an ann n r n rq p

2C e

a 1-1- e D O )112
an L2 2 (D)

( r e a -e'  
-e e* ( r , pc (q)t~C (P)+C r (q )t-Cr (P)) -C () qmsd2a~ar- M- r,. aii r. a ' nnn n p q

;Dr P- p p

Um j 1 e 1 12

an' L2 a7 nm L 2(OD)

1h 1(ka)j'(ka)+jn(ka)h (1) (ka)lh (2 )' (ka)h (2 ) (ka)
= 2n n __ n __ n

h 1,(ka)h (2'(ka)h (!)(ka)h ()(ka)

n n n n

i (ka) (ka)(13
2 h n kh(1)' (ka) h hn(1)(ka)] i3

A similar analysis shows that in this case

k2i+i 0 brm nm (114)

With a and b so defined the modified Green's function becomes, using

(95) and (106)

'- y(P,q)-

-ik Z (2nil)Jn(kr<) In(ka) Jn(ka) h(!)(ka)}h(1)(kr )
2- Z -2~), n--kr<)- (1), h+ n In pn n p

nho (ka (ka

P n (cos 3pq)

1 D N (115)2-( (P,q) + y (P,q)) 15

. .q
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Hence with (98) (99), (106) and (107) we see that

I N
yl(P,q) - 1 Nl(P,q), r a (116)

r q A

ay1 (Pq) 1 S D
an - y1(P,q), r > a (117)n2 n lq p

q q

Moreover with (100) and (108) we have

ay1 (P'q)3ylq 0, rp = a. 
(118)

q

But this last result implies that

- K w - 0 ' w e L,(9D) (119)

hence the spectral radius oi the modified operator is zero. Observe

that with (103) and (111) the spectral radii of the modified operators

D ,N
generated by yI and y1 are both equal to one.

As a consequence of (119) we have

D1 (Slg + ) - - S1 g+, P t D+ V g+ c L,(;D) (120)

and
S( -- Dlf4) = Dlf+, P s D f c L2 (aD) (121)

Equation (120) follows from the uniqueness of solutions of the exterior

Dirichlet problem and observing that with (10) and (119)

lim+ ID (3 g + ) + Slg+A= 0 (122)

-11

whereas (121) follows from uniqueness for the exterior Neumann problem

and observing that with (9) and (119)

s(Df) 7 - (123)

To solve the Dirichlet problem with this modified operator we have

with (51) and (119) and (52)

2 1"  S2 1 2 D(D f (124)+ 2- 1 Dlf + Sl( 9nDlf ) 1 +-DfP D
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but with (121) and (117) this becomes

I1 3 D
v+ Dlf - Y (P,q)f+(q)ds (125)+ 3D q

in agreement with (102). Similarly using the layer ansatz, (54) and

(119) imply that

and then (53) yields the same solution (125).

To solve the Neumann problem, (26) and (119) yields

w*= Slg +  (126)

and with (28)

u+ 2 Slg - 7 DI(Sg ). (27)

Using (120 and (116) this becomes

1
U+ S1g + f (P,q)g,(q)ds (128)

in agreement with (110). With the layer approach (30) and (119) imply

w = g+ (129)

which together with (29) again yields the solution (128).

The remarkable result (119) shows that the spectral radius of the

modified operator is zero in this sphere example when none of the

coefficients in the modification vanish. For applications one would

like to know the effect on the spectral radius of the modified operator

'if only a finite number of coefficients are chosen optimally while the

remainder are taken to be zero i.e. modifications of the form

N M
Z Z a Ce (P)C (q) + b S' (P)Se (q). In this case the optimal

n=O mO nm n nm rm

coefficients are again given by (113) and (11-). However, instead of

(118) we find that for r. a,P
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a-Y = -(P q) i (2n+l){j'(ka)h (1)(ka)+j (ka)hl) (ka)"P (Cos S
;nq 4rninN+l n n n n nl pq

(130)

and Kl~w ly1(~)w(q) dsq
an q

so that, using the orthogonality of' the spherical harmonics,

1 !L2(0D) D 47 n-N (2 ll na n n

r
.1 P (cos(e )w(q)kq )ds ds
13J Dn qq 1  ~ q q,11

But w(q) E: L2( D) => w(q) Z Y n(6 q~ 0) where Y nare general spherical
n-0 ~qq

harmonics and

P (cs(6 )w(q)w(q)ds ds =
2M(Dqql q a

2n-'4 i n q q, q 2n-41 ' (3D)(32

Theref ore

IlT( '.<(a)wL (aD) n n
2 ninN+l ,

Using very crude estimates !or the spherical Besse! and Hankel functions

it may be shown that there exists-a constant C, independent-of ka and N~,

such that (ka) 2

()(1)' Ce

hence
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(ka) 2 (ka) 2

'I K1 wj I' II 12 2 ! 2 Ce 2L 2(0D) I L 2 ( D) e  n-N~l (2n~l) 2  D ~nN+ (2n1L 2 (0D)
N I

and (ka) 2 (135)

2
1K1 I < Ce .(136)

N+l

Thus for any value of ka it is clear that il511 < 1 for N large enough,

and therefore the spectral radius of the modified operator can be made

less than one with only a finite number of nonzero coefficients in the

modification.

VII Concluding Remarks

In this paper we have shown how the modified Green's function

approach of Jones and Ursell can be extended to both Dirichlet and

Neumann problems for the Helmholtz equation in three dimensions giving

rise to an integral equation of the second kind that is uniquely

solvable for all real values of k. In addition we have shown how to

choose the coefficients in the modification optimally, either to best

approximate che Dirichlet or Neumann Green's function or to minimize

the norm of the modified operator. The optimal results were

exhibited explicitly for the sphere where it was also shown that only a

finite number of coefficients need be chosen different from zero to

force the spectral radius of the integral operator to be less than one

for any finite value of ka.

The coefficients for which the modified Green's function best

approximates the exact Green's function are given explicitly (Theorems

5.1 and 5.3). However the coefficients which minimize the spectral

radius (Theorem 5.4) require the construction of a dual basis for

;Ce ,S e

rim on ;D. For nonspherical SD and large values of N this
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may be a considerable numerical complication and one possible

simplification has been proposed, (93). The explicit results for

the sphere allow still another even simpler coefficient choice.

Comparing the explicit results for the coefficients which give the

best approximation to the Dirichlet and Neumann Green's functions

when BD is a sphere, equation (94) and (105) with the coefficients

which minimize the norm of the modified operator (113), we

find that these latter coefficients may be written as

aci ace

i e rim UM

anm ( UM ) + ana (137)at"2|,i~e i!2 + e 12,.''T-
t1i ILm2(D) I L 2(D)J

and

r si e. (8 i8 e 1L

b 1 nm3aD n Snmn :m8D (138)
-m 2;oe 2 ' !1  e 2

[ flnnL 2 (3D) 9n = L2(D)

While the coefficients thus defined minimize the norm of

K, only when ;D is a sphere, it is proposed that this choice be used

for nonspherical surfaces as well. It is easy to demonstrate that

conditions (33) and (34) which ensure that K1 has no characteristic

values is fulfilled since
ac z I c e

I e eE

S(C, 'C ) 8
2a +=--- + -

SCe !2 2

F =1 L 2(BD) 7 = L 2 (D)

(Ce ,Ce )
I 'nm D 9n D

CrI;L2(0D) ' n 'L L(SD)

(C C e l

nm .nm- < 1 (139)
, e  ?2

" rim "L2 (;D)
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where the last inequality follows from Theorem 5.2. A similar analysis

shows that i2bnm+l 1<1. It is reasonable to expect that with the

coefficients defined by (137) and (138) the spectral radius of the

modified operator, which is zero when -D is a sphere, will remain less

than one for a class of nonspherical surfaces and furthermore if only

a finite number of coefficients are taken to nonzero, defined by

(137) and (138), the spectral radius will be less one in an interval in

k which increases with the number of nonzero coefficients. A

characterization of this class of surfaces and relationship between

the geometry, values of k for which the spectral radius is less than

one, and the number of nonzero coefficients constitute a class of

problems that remain to be solved.
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